Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(7): 1338-1353.e8, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503284

RESUMO

MCL-1 is essential for promoting the survival of many normal cell lineages and confers survival and chemoresistance in cancer. Beyond apoptosis regulation, MCL-1 has been linked to modulating mitochondrial metabolism, but the mechanism(s) by which it does so are unclear. Here, we show in tissues and cells that MCL-1 supports essential steps in long-chain (but not short-chain) fatty acid ß-oxidation (FAO) through its binding to specific long-chain acyl-coenzyme A (CoA) synthetases of the ACSL family. ACSL1 binds to the BH3-binding hydrophobic groove of MCL-1 through a non-conventional BH3-domain. Perturbation of this interaction, via genetic loss of Mcl1, mutagenesis, or use of selective BH3-mimetic MCL-1 inhibitors, represses long-chain FAO in cells and in mouse livers and hearts. Our findings reveal how anti-apoptotic MCL-1 facilitates mitochondrial metabolism and indicate that disruption of this function may be associated with unanticipated cardiac toxicities of MCL-1 inhibitors in clinical trials.


Assuntos
Ácidos Graxos , Mitocôndrias , Animais , Camundongos , Apoptose , Coenzima A Ligases/genética , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Oxirredução
2.
J Biol Chem ; 300(2): 105627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211817

RESUMO

The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.


Assuntos
Ácido Oleico , Peptídeos , Staphylococcus aureus , Microscopia Crioeletrônica , Ácidos Graxos Insaturados , Bicamadas Lipídicas/metabolismo , Fosfatos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
3.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37961110

RESUMO

Intrinsically disordered proteins (IDPs) perform a wide range of functions in biology, suggesting that the ability to design IDPs could help expand the repertoire of proteins with novel functions. Designing IDPs with specific structural or functional properties has, however, been difficult, in part because determining accurate conformational ensembles of IDPs generally requires a combination of computational modelling and experiments. Motivated by recent advancements in efficient physics-based models for simulations of IDPs, we have developed a general algorithm for designing IDPs with specific structural properties. We demonstrate the power of the algorithm by generating variants of naturally occurring IDPs with different levels of compaction and that vary more than 100 fold in their propensity to undergo phase separation, even while keeping a fixed amino acid composition. We experimentally tested designs of variants of the low-complexity domain of hnRNPA1 and find high accuracy in our computational predictions, both in terms of single-chain compaction and propensity to undergo phase separation. We analyze the sequence features that determine changes in compaction and propensity to phase separate and find an overall good agreement with previous findings for naturally occurring sequences. Our general, physics-based method enables the design of disordered sequences with specified conformational properties. Our algorithm thus expands the toolbox for protein design to include also the most flexible proteins and will enable the design of proteins whose functions exploit the many properties afforded by protein disorder.

4.
Commun Biol ; 6(1): 673, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355765

RESUMO

While heme synthesis requires the formation of a potentially lethal intermediate, protoporphyrin IX (PPIX), surprisingly little is known about the mechanism of its toxicity, aside from its phototoxicity. The cellular protein interactions of PPIX might provide insight into modulators of PPIX-induced cell death. Here we report the development of PPB, a biotin-conjugated, PPIX-probe that captures proteins capable of interacting with PPIX. Quantitative proteomics in a diverse panel of mammalian cell lines reveal a high degree of concordance for PPB-interacting proteins identified for each cell line. Most differences are quantitative, despite marked differences in PPIX formation and sensitivity. Pathway and quantitative difference analysis indicate that iron and heme metabolism proteins are prominent among PPB-bound proteins in fibroblasts, which undergo PPIX-mediated death determined to occur through ferroptosis. PPB proteomic data (available at PRIDE ProteomeXchange # PXD042631) reveal that redox proteins from PRDX family of glutathione peroxidases interact with PPIX. Targeted gene knockdown of the mitochondrial PRDX3, but not PRDX1 or 2, enhance PPIX-induced death in fibroblasts, an effect blocked by the radical-trapping antioxidant, ferrostatin-1. Increased PPIX formation and death was also observed in a T-lymphoblastoid ferrochelatase-deficient leukemia cell line, suggesting that PPIX elevation might serve as a potential strategy for killing certain leukemias.


Assuntos
Ácido Aminolevulínico , Peroxirredoxinas , Animais , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/farmacologia , Peroxirredoxinas/genética , Proteômica , Heme/metabolismo , Morte Celular , Mamíferos
5.
Biophys J ; 122(2): 310-321, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36518077

RESUMO

Diffusion measurements by pulsed-field gradient NMR and fluorescence correlation spectroscopy can be used to probe the hydrodynamic radius of proteins, which contains information about the overall dimension of a protein in solution. The comparison of this value with structural models of intrinsically disordered proteins is nonetheless impaired by the uncertainty of the accuracy of the methods for computing the hydrodynamic radius from atomic coordinates. To tackle this issue, we here build conformational ensembles of 11 intrinsically disordered proteins that we ensure are in agreement with measurements of compaction by small-angle x-ray scattering. We then use these ensembles to identify the forward model that more closely fits the radii derived from pulsed-field gradient NMR diffusion experiments. Of the models we examined, we find that the Kirkwood-Riseman equation provides the best description of the hydrodynamic radius probed by pulsed-field gradient NMR experiments. While some minor discrepancies remain, our results enable better use of measurements of the hydrodynamic radius in integrative modeling and for force field benchmarking and parameterization.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Rádio (Anatomia)/metabolismo , Hidrodinâmica , Conformação Proteica , Espectrometria de Fluorescência , Espalhamento a Baixo Ângulo
6.
iScience ; 25(10): 105064, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36147946

RESUMO

Poration of the outer mitochondrial membrane by the effector BCL-2 proteins BAK and BAX initiates apoptosis. BH3-only initiators BID and BIM trigger conformational changes in BAK and BAX transforming them from globular dormant proteins to oligomers of the apoptotic pores. Small molecules that can directly activate effectors are being sought for applications in cancer treatment. Here, we describe the small molecule SJ572946, discovered in a fragment-based screen that binds to the activation groove of BAK and selectively triggers BAK activation over that of BAX in liposome and mitochondrial permeabilization assays. SJ572946 independently kills BAK-expressing BCL2allKO HCT116 cells revealing on target cellular activity. In combination with apoptotic inducers and BH3 mimetics, SJ572946 kills experimental cancer cell lines. SJ572946 also cooperates with the endogenous BAK activator BID in activating a misfolded BAK mutant substantially impaired in activation. SJ572946 is a proof-of-concept tool for probing BAK-mediated apoptosis in preclinical cancer research.

7.
J Biol Chem ; 298(3): 101676, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122790

RESUMO

Fatty acid (FA) transfer proteins extract FA from membranes and sequester them to facilitate their movement through the cytosol. Detailed structural information is available for these soluble protein-FA complexes, but the structure of the protein conformation responsible for FA exchange at the membrane is unknown. Staphylococcus aureus FakB1 is a prototypical bacterial FA transfer protein that binds palmitate within a narrow, buried tunnel. Here, we define the conformational change from a "closed" FakB1 state to an "open" state that associates with the membrane and provides a path for entry and egress of the FA. Using NMR spectroscopy, we identified a conformationally flexible dynamic region in FakB1, and X-ray crystallography of FakB1 mutants captured the conformation of the open state. In addition, molecular dynamics simulations show that the new amphipathic α-helix formed in the open state inserts below the phosphate plane of the bilayer to create a diffusion channel for the hydrophobic FA tail to access the hydrocarbon core and place the carboxyl group at the phosphate layer. The membrane binding and catalytic properties of site-directed mutants were consistent with the proposed membrane docked structure predicted by our molecular dynamics simulations. Finally, the structure of the bilayer-associated conformation of FakB1 has local similarities with mammalian FA binding proteins and provides a conceptual framework for how these proteins interact with the membrane to create a diffusion channel from the FA location in the bilayer to the protein interior.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a Ácido Graxo , Ácidos Graxos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Ligantes , Mamíferos/metabolismo , Membranas/química , Membranas/metabolismo , Fosfatos/metabolismo , Conformação Proteica , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo
8.
Nat Commun ; 13(1): 250, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017502

RESUMO

BCL-2 proteins regulate mitochondrial poration in apoptosis initiation. How the pore-forming BCL-2 Effector BAK is activated remains incompletely understood mechanistically. Here we investigate autoactivation and direct activation by BH3-only proteins, which cooperate to lower BAK threshold in membrane poration and apoptosis initiation. We define in trans BAK autoactivation as the asymmetric "BH3-in-groove" triggering of dormant BAK by active BAK. BAK autoactivation is mechanistically similar to direct activation. The structure of autoactivated BAK BH3-BAK complex reveals the conformational changes leading to helix α1 destabilization, which is a hallmark of BAK activation. Helix α1 is destabilized and restabilized in structures of BAK engaged by rationally designed, high-affinity activating and inactivating BID-like BH3 ligands, respectively. Altogether our data support the long-standing hit-and-run mechanism of BAK activation by transient binding of BH3-only proteins, demonstrating that BH3-induced structural changes are more important in BAK activation than BH3 ligand affinity.


Assuntos
Apoptose/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Morte Celular , Cristalografia por Raios X , Humanos , Ligantes , Lipossomos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química
9.
Nucleic Acids Res ; 49(5): 2931-2945, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33577679

RESUMO

Liquid-liquid phase separation underlies the membrane-less compartmentalization of cells. Intrinsically disordered low-complexity domains (LCDs) often mediate phase separation, but how their phase behavior is modulated by folded domains is incompletely understood. Here, we interrogate the interplay between folded and disordered domains of the RNA-binding protein hnRNPA1. The LCD of hnRNPA1 is sufficient for mediating phase separation in vitro. However, we show that the folded RRM domains and a folded solubility-tag modify the phase behavior, even in the absence of RNA. Notably, the presence of the folded domains reverses the salt dependence of the driving force for phase separation relative to the LCD alone. Small-angle X-ray scattering experiments and coarse-grained MD simulations show that the LCD interacts transiently with the RRMs and/or the solubility-tag in a salt-sensitive manner, providing a mechanistic explanation for the observed salt-dependent phase separation. These data point to two effects from the folded domains: (i) electrostatically-mediated interactions that compact hnRNPA1 and contribute to phase separation and (ii) increased solubility at higher ionic strengths mediated by the folded domains. The interplay between disordered and folded domains can modify the dependence of phase behavior on solution conditions and can obscure signatures of physicochemical interactions underlying phase separation.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/química , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Domínios Proteicos , Espalhamento a Baixo Ângulo , Cloreto de Sódio/química , Solubilidade , Difração de Raios X
10.
Science ; 367(6478): 694-699, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32029630

RESUMO

Prion-like domains (PLDs) can drive liquid-liquid phase separation (LLPS) in cells. Using an integrative biophysical approach that includes nuclear magnetic resonance spectroscopy, small-angle x-ray scattering, and multiscale simulations, we have uncovered sequence features that determine the overall phase behavior of PLDs. We show that the numbers (valence) of aromatic residues in PLDs determine the extent of temperature-dependent compaction of individual molecules in dilute solutions. The valence of aromatic residues also determines full binodals that quantify concentrations of PLDs within coexisting dilute and dense phases as a function of temperature. We also show that uniform patterning of aromatic residues is a sequence feature that promotes LLPS while inhibiting aggregation. Our findings lead to the development of a numerical stickers-and-spacers model that enables predictions of full binodals of PLDs from their sequences.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/química , Transição de Fase , Fenilalanina/química , Príons/química , Tirosina/química , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Autophagy ; 16(1): 183-184, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31690182

RESUMO

Lipidation of Atg8-family ubiquitin-like proteins (UBLs) plays important roles in macroautophagy/autophagy. This process is catalyzed by an E1-E2-E3 trienzyme cascade, in which an E1 enzyme, Atg7, directs Atg8 to its E2 enzyme, Atg3, forming a thioester bond-linked Atg3~ Atg8 intermediate; then the composite E3, Atg12-Atg5-Atg16, interacts with the Atg3~ Atg8 intermediate and promotes Atg8 transfer from the catalytic cysteine of Atg3 to the head group of phosphatidylethanolamine (PE) lipids. Despite progress that has been made toward understanding the Atg8 lipidation pathway, the molecular mechanism of Atg3 as it orchestrates between the E1 and E3 remains unclear. Here we summarize our recent work reporting an element in Atg3, termed the E1, E2, and E3-interacting region (E123IR), is an allosteric switch: in the absence of other binding partners, the E123IR restrains Atg3's catalytic loop, while the E1 or E3 enzyme directly binds this region to remove this brace and thereby conformationally activate Atg3 to elicit Atg8 lipidation in vitro and in vivo.


Assuntos
Regulação Alostérica/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo
12.
Nat Commun ; 10(1): 3600, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399562

RESUMO

Autophagy depends on the E2 enzyme, Atg3, functioning in a conserved E1-E2-E3 trienzyme cascade that catalyzes lipidation of Atg8-family ubiquitin-like proteins (UBLs). Molecular mechanisms underlying Atg8 lipidation remain poorly understood despite association of Atg3, the E1 Atg7, and the composite E3 Atg12-Atg5-Atg16 with pathologies including cancers, infections and neurodegeneration. Here, studying yeast enzymes, we report that an Atg3 element we term E123IR (E1, E2, and E3-interacting region) is an allosteric switch. NMR, biochemical, crystallographic and genetic data collectively indicate that in the absence of the enzymatic cascade, the Atg3E123IR makes intramolecular interactions restraining Atg3's catalytic loop, while E1 and E3 enzymes directly remove this brace to conformationally activate Atg3 and elicit Atg8 lipidation in vitro and in vivo. We propose that Atg3's E123IR protects the E2~UBL thioester bond from wayward reactivity toward errant nucleophiles, while Atg8 lipidation cascade enzymes induce E2 active site remodeling through an unprecedented mechanism to drive autophagy.


Assuntos
Regulação Alostérica/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Domínio Catalítico , Cristalografia por Raios X , Ligases , Modelos Moleculares , Mutação , Conformação Proteica , Processamento de Proteína Pós-Traducional/fisiologia , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Enzimas Ativadoras de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinas/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(35): 17280-17289, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31350353

RESUMO

Ubiquitin (Ub)-mediated proteolysis is a fundamental mechanism used by eukaryotic cells to maintain homeostasis and protein quality, and to control timing in biological processes. Two essential aspects of Ub regulation are conjugation through E1-E2-E3 enzymatic cascades and recognition by Ub-binding domains. An emerging theme in the Ub field is that these 2 properties are often amalgamated in conjugation enzymes. In addition to covalent thioester linkage to Ub's C terminus for Ub transfer reactions, conjugation enzymes often bind noncovalently and weakly to Ub at "exosites." However, identification of such sites is typically empirical and particularly challenging in large molecular machines. Here, studying the 1.2-MDa E3 ligase anaphase-promoting complex/cyclosome (APC/C), which controls cell division and many aspects of neurobiology, we discover a method for identifying unexpected Ub-binding sites. Using a panel of Ub variants (UbVs), we identify a protein-based inhibitor that blocks Ub ligation to APC/C substrates in vitro and ex vivo. Biochemistry, NMR, and cryo-electron microscopy (cryo-EM) structurally define the UbV interaction, explain its inhibitory activity through binding the surface on the APC2 subunit that recruits the E2 enzyme UBE2C, and ultimately reveal that this APC2 surface is also a Ub-binding exosite with preference for K48-linked chains. The results provide a tool for probing APC/C activity, have implications for the coordination of K48-linked Ub chain binding by APC/C with the multistep process of substrate polyubiquitylation, and demonstrate the power of UbV technology for identifying cryptic Ub-binding sites within large multiprotein complexes.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Ciclossomo-Complexo Promotor de Anáfase/química , Poliubiquitina/química , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/química , Ubiquitinação , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Sítios de Ligação , Humanos , Poliubiquitina/genética , Poliubiquitina/metabolismo , Engenharia de Proteínas , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Xenopus laevis
14.
Cell Chem Biol ; 26(6): 863-877.e7, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31031142

RESUMO

Necroptosis is an inflammatory form of programmed cell death executed through plasma membrane rupture by the pseudokinase mixed lineage kinase domain-like (MLKL). We previously showed that MLKL activation requires metabolites of the inositol phosphate (IP) pathway. Here we reveal that I(1,3,4,6)P4, I(1,3,4,5,6)P5, and IP6 promote membrane permeabilization by MLKL through directly binding the N-terminal executioner domain (NED) and dissociating its auto-inhibitory region. We show that IP6 and inositol pentakisphosphate 2-kinase (IPPK) are required for necroptosis as IPPK deletion ablated IP6 production and inhibited necroptosis. The NED auto-inhibitory region is more extensive than originally described and single amino acid substitutions along this region induce spontaneous necroptosis by MLKL. Activating IPs bind three sites with affinity of 100-600 µM to destabilize contacts between the auto-inhibitory region and NED, thereby promoting MLKL activation. We therefore uncover MLKL's activating switch in NED triggered by a select repertoire of IP metabolites.


Assuntos
Fosfatos de Inositol/metabolismo , Proteínas Quinases/metabolismo , Animais , Sobrevivência Celular , Células HT29 , Humanos , Proteínas Quinases/isolamento & purificação , Células Sf9 , Spodoptera
15.
Mol Cell ; 70(5): 936-948.e7, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883610

RESUMO

Necroptosis is an important form of lytic cell death triggered by injury and infection, but whether mixed lineage kinase domain-like (MLKL) is sufficient to execute this pathway is unknown. In a genetic selection for human cell mutants defective for MLKL-dependent necroptosis, we identified mutations in IPMK and ITPK1, which encode inositol phosphate (IP) kinases that regulate the IP code of soluble molecules. We show that IP kinases are essential for necroptosis triggered by death receptor activation, herpesvirus infection, or a pro-necrotic MLKL mutant. In IP kinase mutant cells, MLKL failed to oligomerize and localize to membranes despite proper receptor-interacting protein kinase-3 (RIPK3)-dependent phosphorylation. We demonstrate that necroptosis requires IP-specific kinase activity and that a highly phosphorylated product, but not a lowly phosphorylated precursor, potently displaces the MLKL auto-inhibitory brace region. These observations reveal control of MLKL-mediated necroptosis by a metabolite and identify a key molecular mechanism underlying regulated cell death.


Assuntos
Neoplasias do Colo/enzimologia , Fosfatos de Inositol/metabolismo , Proteínas Quinases/metabolismo , Sítios de Ligação , Morte Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/virologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HT29 , Herpesvirus Humano 1/patogenicidade , Humanos , Células Jurkat , Mutação , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
16.
J Mol Biol ; 430(17): 2857-2872, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29864443

RESUMO

REV1 is a DNA damage tolerance protein and encodes two ubiquitin-binding motifs (UBM1 and UBM2) that are essential for REV1 functions in cell survival under DNA-damaging stress. Here we report the first solution and X-ray crystal structures of REV1 UBM2 and its complex with ubiquitin, respectively. Furthermore, we have identified the first small-molecule compound, MLAF50, that directly binds to REV1 UBM2. In the heteronuclear single quantum coherence NMR experiments, peaks of UBM2 but not of UBM1 are significantly shifted by the addition of ubiquitin, which agrees to the observation that REV1 UBM2 but not UBM1 is required for DNA damage tolerance. REV1 UBM2 interacts with hydrophobic residues of ubiquitin such as L8 and L73. NMR data suggest that MLAF50 binds to the same residues of REV1 UBM2 that interact with ubiquitin, indicating that MLAF50 can compete with the REV1 UBM2-ubiquitin interaction orthosterically. Indeed, MLAF50 inhibited the interaction of REV1 UBM2 with ubiquitin and prevented chromatin localization of REV1 induced by cisplatin in U2OS cells. Our results structurally validate REV1 UBM2 as a target of a small-molecule inhibitor and demonstrate a new avenue to targeting ubiquitination-mediated protein interactions with a chemical tool.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Éteres Fenílicos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina/química , Ubiquitina/metabolismo , Sequência de Aminoácidos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Cromatina/química , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Dano ao DNA , Humanos , Modelos Moleculares , Proteínas Nucleares/efeitos dos fármacos , Nucleotidiltransferases/efeitos dos fármacos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Células Tumorais Cultivadas , Ubiquitina/efeitos dos fármacos , Ubiquitinação
17.
Cell Rep ; 23(7): 2083-2094.e6, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768206

RESUMO

The effector B cell lymphoma-2 (BCL-2) protein BCL-2 ovarian killer (BOK) induces mitochondrial outer membrane permeabilization (MOMP) to initiate apoptosis upon inhibition of the proteasome. How BOK mediates MOMP is mechanistically unknown. The NMR structure of the BCL-2 core of human BOK reveals a conserved architecture with an atypical hydrophobic groove that undergoes conformational exchange. Remarkably, the BCL-2 core of BOK spontaneously associates with purified mitochondria to release cytochrome c in MOMP assays. Alanine substitution of a unique glycine in helix α1 stabilizes BOK, as shown by thermal shift and urea denaturation analyses, and significantly inhibits MOMP, liposome permeabilization, and cell death. Activated BID does not activate WT BOK or the stabilized alanine mutant to promote cell death. We propose that BOK-mediated membrane permeabilization is governed in part by its unique metastability of the hydrophobic groove and helix α1 and not through activation by BH3 ligands.


Assuntos
Apoptose , Permeabilidade da Membrana Celular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Glicina/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Ligantes , Lipossomos , Espectroscopia de Ressonância Magnética , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/metabolismo , Mutagênese , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química , Homologia Estrutural de Proteína
18.
SLAS Discov ; 23(2): 164-173, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28985478

RESUMO

Splicing is an important eukaryotic mechanism for expanding the transcriptome and proteome, influencing a number of biological processes. Understanding its regulation and identifying small molecules that modulate this process remain a challenge. We developed an assay based on time-resolved fluorescence resonance energy transfer (TR-FRET) to detect the interaction between the protein NHP2L1 and U4 RNA, which are two key components of the spliceosome. We used this assay to identify small molecules that interfere with this interaction in a high-throughput screening (HTS) campaign. Topotecan and other camptothecin derivatives were among the top hits. We confirmed that topotecan disrupts the interaction between NHP2L1 and U4 by binding to U4 and inhibits RNA splicing. Our data reveal new functions of known drugs that could facilitate the development of therapeutic strategies to modify splicing and alter gene function.


Assuntos
Splicing de RNA/efeitos dos fármacos , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Topotecan/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Spliceossomos/efeitos dos fármacos
19.
J Am Chem Soc ; 138(47): 15323-15335, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27807972

RESUMO

Many cell signaling events are coordinated by intrinsically disordered protein regions (IDRs) that undergo multisite Serine/Threonine phosphorylation. The conformational properties of these IDRs prior to and following multisite phosphorylation are directly relevant to understanding their functions. Here, we present results from biophysical studies and molecular simulations that quantify the conformational properties of an 81-residue IDR from the S. cerevisiae transcription factor Ash1. We show that the unphosphorylated Ash1 IDR adopts coil-like conformations that are expanded and well-solvated. This result contradicts inferences regarding global compaction that are derived from heuristics based on amino acid compositions for IDRs with low proline contents. Upon phosphorylation at ten distinct sites, the global conformational properties of pAsh1 are indistinguishable from those of unphosphorylated Ash1. This insensitivity derives from compensatory changes to the pattern of local and long-range intrachain contacts. We show that the conformational properties of Ash1 and pAsh1 can be explained in terms of the linear sequence patterning of proline and charged residues vis-à-vis all other residues. The sequence features of the Ash1 IDR are shared by many other IDRs that undergo multisite phosphorylation. Accordingly, we propose that our findings might be generalizable to other IDRs involved in cell signaling.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Fosforilação , Conformação Proteica , Saccharomyces cerevisiae/metabolismo
20.
Cell ; 165(6): 1440-1453, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259151

RESUMO

Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Biocatálise , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Relação Estrutura-Atividade , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...